Sustainable Pavement Rehabilitation: Thin Bonded Wear Course with High Taconite and Recycled Asphalt Shingles Mix

Eshan V. Dave
University of Minnesota, Duluth

Students: Chelsea Hanson, Justin Baker, Waylon Munch

February 14th 2013

17th Annual TERRA Pavement Conference St. Paul, MN

Outline

- Thin Bonded Overlays / Wearing Courses
- Yosemite Avenue Project
- Sustainability Evaluation of the Project
- **⊠**Laboratory Characterization of Field Samples
- **Summary**

Thin Asphalt Overlays/Wear Courses

- Historically thin asphalt overlays were treated as means of pavement preservation
 - Current usage is more driven by pavement rehabilitation

 - Surface improvement overlays
 - Mill and fill
- Thin overlays / wear courses can have significant pavement rehabilitation benefits
 - Sealing pavement surface
 - Skid resistance and smoothness
 - Improved thermal cracking performance
 - Maintain clearance and profiles
 - Ability to recycle
 - Noise benefits
 - Life cycle extension
 - Construction and material quality

Thin Asphalt Overlay – Cost Effectiveness

▼Life Cycle Cost Analysis

Wolters and Thomas, 2010

Thin Asphalt Overlays / Wear Courses

- - Ultra Thin < 1 inch
- Requires some mix design innovations
 - Use of performance tests
 - Number of provisional specifications

- - Traditional HMA placement

Thin Bonded Asphalt Wear Course Construction

- Single Pass Paving Process:
 Spray Paver
- Range of HMA types
- ⋈ High application rate of uniform Tack Coat(3-5 times > conventional)

Benefits

- No Tack Coat Tracking
- Improved Bonding
- Provides Waterproofing
- Rapid Construction (30 to 120 ft/min)

Outline

- Thin Bonded Overlays / Wearing Courses
- Yosemite Avenue Project
- Sustainability Evaluation of the Project
- Summary

City of Duluth Field Study

- Project: Yosemite Avenue (N-W Duluth)
 - Low volume residential street
- - Mill existing asphalt
 - Regrade (and reclaim) base
 - Wear Course: 1.5 inch
 - Non-Wear (Binder) Course: 2 inch
- Three 1000 ft. test sections
 - Section-1: Traditional Approach (Control section)
 - Section-2: 1 inch thin bonded wear course
 - Section-3: ¾ inch thin bonded wear course

Yosemite Avenue

Design Philosophy

- High Friction Surface (Ice and Snow)
- High Cracking Resistance
- Moderate load carrying capacity
 - Garbage trucks, occasional delivery trucks etc.
- Smooth Surface (Bike friendly)

Approach

- Thin bonded wear course on surface (High performance sustainable mix)

 - **▼** Excellent water proofing
 - **™**High friction
- Non-wear courses
 - 2.5 3 inch regular hot-mix

Section-1 (Control)

Traditional Wearing Course (1.5 inch)

Binder Course (2 inch)

Reclaimed Base (~ 6 inch)

Subgrade

Section-2

Bonded Thin Wearing Course (1 inch)

Binder Course (2.5 inch)

Reclaimed Base (~ 6 inch)

Subgrade

Section-3

Thin Bonded Wearing Course (0.75 inch)

Binder Course (2.75 inch)

Reclaimed Base (~ 6 inch)

Subgrade

Section-2:

- Thin Bonded Wearing Course
- Engineered Emulsion Tack Coat
 0.08 gal/sq. yd.

Section-3

- Thin Bonded Wearing Course
- Engineered Emulsion Tack Coat
 0.20 gal/sq. yd.

Materials in Thin Wear Course Mix

- By-product from taconite mining operations at Minnesota Mesabi Iron Range (MMIR)
- Annual production = 125 Million Tons
 Most of this ends up in land-fills
 around mines
- MnDOT and UMD-NRRI have conducted significant feasibility research on use of tailings in HMA

- Rich in Asphalt Binder (18-40%)
- Annual Availability = 10 Million Tons

Mix Design for Yosemite Avenue

- Number of recent studies have proposed various volumetric limits for 4.75 mm mixes (more research is underway)
- Started with six aggregate blends that met the AASHTO specifications for gradation
 - Bailey method approach was utilized to optimize the aggregate packing
- Focused on VMA and VFA at 4% Air void level
 - Reduced to three gradations for asphalt content trails
- The design with highest taconite tailings content (45.5%), 5% recycled shingles and VMA above 16.0% was chosen

Thin Overlay Mix Design – Yosemite Avenue

	Docian Acabalt				
Taconite Tailing	BA Sand Crusher Dust RAS				Design Asphalt Content (%)
45.5	24.5	29.0	1.0	5.0	7.7

Yosemite Avenue: Control and Non Wear Course

Yosemite Avenue: Bonded Wear Course

Outline

- Thin Bonded Overlays / Wearing Courses
- Yosemite Avenue Project
- Sustainability Evaluation of the Project
- Summary

Pavement Sustainability Rating Systems

Rating System	Sustainable Rating Systems						
Attributes	PaLATE	Greenroads	GreenLITES	INVEST	I-LAST		
Based on Point System (Qualitative Approach)	I	ü		ü	ü		
Accounts for: Environmental Effects, Materials, Energy, and Sustainable Practices	ü	ü	ü	ü	ü		
Quantitative Input: Roadway Design, Construction, Maintenance, and Cost	ü	_	1	-	-		

PaLATE Results

- Focus on energy demands and CO₂ emissions:
 - Material Production
 - Transportation and Construction

Energy Demand (MJ / inch-mile placed)

Mix Type	Mat. Prod.	Transp. & Const.	Total
Traditional Mix	744,577	20,598	765,175
Taconite+RAS Mix	599,820	34,608	634,428

CO₂ Emissions (kg/ inch-mile placed)

Mix Type	Mat. Prod.	Transp. & Const.	Total
Traditional Mix	32,373	1,540	33,913
Taconite+RAS Mix	30,230	2,587	32,817

Outline

- Thin Bonded Overlays / Wearing Courses
- Yosemite Avenue Project
- Sustainability Evaluation of the Project
- **⊠**Laboratory Characterization of Field Samples
- Summary

Lab Testing of Field Samples

Mix Volumetrics

- Loose Mix and cored samples were collected and tested by Golder Associates
- Marshall flow and stability tests were also conducted by Golder Associates

- Evaluation of bond between wear course and underlying layers
- Cored samples were provided to Road Science for testing using the Portable Bond Tester (PBT)

- Provides measure of the cracking resistance of the mix
- Has been shown to correlate very well against low temperature cracking amount

Mix Volumetrics

- - Very thin lift, gage not calibrated to this type of mix
- - Plant Mix = 7.7%
- ▼ Voids in Mineral Aggregate (VMA) = 19.3%
- **W** Voids Filled with Asphalt (VFA) = 77.7%
- Percent crushed = 95%
- Marshall Stability = 11,972 N (2,690 lb.)
 - Usually required limit for heavy traffic is 8,000 N
- Marshall Flow = 11.6 (0.25 mm / 0.001 inch)
 - For heavy traffic: 8 14

Portable Bond Test Equipment

- **X** Equipment and test under evaluation
- W Use in lab or in field
- ☑ Portable, battery powered, weight ~25#
- Data acquisition, captures load and travel
- ② 2 inch diameter specimens on road or in larger core
- ₩ 500 lb. load capacity

Portable Bond Tester Results

Section	Time (Days after construction)	Bond Energy J/m ²	
2 (0 09 gal/yd²)	42	24.8	
2 (0.08 gal/yd²)	57	45.2	
	37	33.6	
$3 (0.20 \text{ gal/yd}^2)$	42	42.5	
	57	39.0	

MAII cores were obtained within 2 days of paving

Testing of additional cores is planned

Disk-Shaped Compact Tension (DCT) Test

- **MASTM D7313**
- - Crack Mouth Opening Displacement
 - CMOD = 1.0-mm/min
- **Measurements:**
 - CMOD
 - Load

ASTM D7313: Standard Test Method for Determining Fracture Energy of Asphalt-Aggregate Mixtures Using the Disk-Shaped Compact Tension Geometry

Fracture Energy Results for the Taconite-RAS Mix

Test Temperature = -24°C Recommended Minimum = 400 J/m²

Outline

- Thin Bonded Overlays / Wearing Courses
- Yosemite Avenue Project
- Sustainability Evaluation of the Project
- **Summary**

Summary

- The current mill and fill approach used for rehabilitation of low volume roads can be improved to extend the maintenance dollars
- - Good friction
 - Waterproofing
 - Cracking resistance
- - Lower material costs and environmental impacts (Tailings and RAS)
 - Reduced thicknesses of underlying non-wear courses
 - Average cost difference between control section and the thin bonded wear course section ~ 9%

Summary (cont.)

- Few cracks in all test sections due to base settlement
 - No thermal cracks so far
- M Longitudinal joint on control section is cracking

Thank you for your attention!!!

Questions?

Acknowledgements:

- Ø City of Duluth
- Ø LRRB Local Operational Research Assistance (OPERA) Program
- **Ø Minnesota Department of Transportation**
- Ø Road Science
- **Ø UMD Natural Resources Research Institute (NRRI)**
- Ø Golder Associates

Thin Overlay – Asphalt Mix Considerations

- Requires high quality aggregate
- High air void content
- Good friction and drainability

- Significant effort on development of gradation and volumetric criteria for 4.75 mm mixes
- High surface smoothness
- Good pavement sealing and may add surface cracking benefits

Thin Overlay – 4.75 mm Mix Designs

Significant research has been undertaken in recent years

James et al. (2007)

Proposed gradation and volumetric requirements

Gradation Control

```
- 9.5 mm 95 - 100%
```

Volumetrics

- Min. 16% VMA
- VFA: 75 78% (high traffic), 75 80% (low traffic)
- Dust proportion 0.9 2.2

Thin Overlays: 4.75 mm Mix Design

MAASHTO M 323 Specifications:

		FAA Depth from Surface					
Design ESALs (Millions)	N_{des}	≤ 100 mm	≥ 100 mm	SE	VMA	VFA	N _{ini}
<0.3	50	-	-	40	16.0	70-80%	≤91.5
0.3 to <3.0	75	40	40	40	16.0	65-78%	≤90.5
3.0 to<10	75	45	40	45	16.0	75-78%	≤89.0
Sieve size	Min.	Max.	$V_a = 4.0\%$				
12.5 mm	100		D:B Ratio: 0.9 to 2.0				
9.5 mm	95	100					
4.75 mm	90	100	100				
1.18 mm	30	60					
0.075 mm	6	12					

Thin Overlays - 4.75 mm Mix Design

- Major modification from AASHTO specification: Use of V_{be} instead of VMA and VFA
- This modification is based on performance tests

		_					
Design ESAL Range (Millions)	N _{des}	Minimum FAA	Minimum SE	Minimum V _{be}	Maximum V _{be}	%G _{mm} @N _{ini}	D:B Ratio
<0.3	50	40	40	12.0	15.0	≤91.5	1.0 to 2.0
0.3 to ≤ 3.0	75	45	40	11.5	13.5	≤90.5	1.0 to 2.0
3.0 to ≤ 30	100	45	45	11.5	13.5	≤89.0	1.0 to 2.0
Gradation Limits							
Sieve Size	Max.	Min.		Desi	gn V _a Range	= 4.0% to 6.	0%
12.5 mm		100					
9.5 mm	100	95			_		
4.75 mm	100	90	Effec	tive bind	der amo	unt	
1.18 mm	30	55					
0.075 mm	13	6					

Thin Overlays – 4.75 mm Mix Designs

Texas (Scullion et al., 2009): CAM

Sieve Size	Fine Mixture
1/2"	(% Passing by Weight or Volume)
3/8"	98.0–100.0
#4	70.0-90.0
#8	40.0–65.0
#16	20.0-45.0
#30	
	10.0–30.0
#50	10.0–20.0
#200	2.0–10.0

- 2 4% Air Voids
- - Hamburg and Texas Overlay Tester

Thin Asphalt Overlays: MnROAD

W Two test sections in Cell-6

Mix consists of significant quantities of Taconite tailings

rabornio ta	iiiigo	
Mix Type	Proposed AASHTO Criteria	MnDOT SPWEB440F Special
Mix Size	4.75 mm NMAS	4.75 mm NMAS
Binder Type		PG 64 -34 (polymer modified)
Binder Content		7.4%, Pbe=6.9
Aggregate Blend		55% Taconite tailings (Mintac) 10% Taconite tailings (Ispat) 35% Man-sand (Loken)
Target Gradation	30%-55% passing 1.18 mm Sieve 6-13% passing 0.075 mm Sieve	51% passing 1.18 mm Sieve 7.7% passing 0.075 mm Sieve
Aggregate Properties	FAA = 45 (min) SE = 45 (min) Nat.Sand=15(max) if FAA<45	FAA = 47 SE = 83 N/A
Air Voids	4.0%–6.0% (N _{des} =75 gyrations) 89.0 max (%G _{mm} @ N _{ini})	V _a =3.9% at N _{des} =75 gyrations Not reported
Volumetric Properties	V _{ke} 11.5-13.5 VMA 16.0 min. (note 1) VFA 65-78 (note 1) D:B ratio 1.5-2.0	V _{be} =16.4 VMA=20.3 VFA 80.8 D:B ratio =1.1
Moisture Susceptibility		TSR=0.82 @ V _a = 9.0%

106 206

2"64-34

5" PCC

5" PCC

2"64-34

6" Cl-1 Stab Agg

> 6'' Class 5

> > Clay

HMA: Mesabi 4.75 SuperP

PCC: 15'x12' no dowels

36